Date of Award
2010
Degree Type
Thesis
Department
Mechanical Engineering
First Advisor
Gorla, Rama S. R.
Subject Headings
Heat -- Transmission, Nanofluids, Surfaces, Suction/injection, moving surface, nanofluid
Abstract
The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow and heat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermal surface moving continuously. The resulting system of non-linear ordinary differential equations is solved numerically using Runge-Kutta method with shooting techniques. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the friction factor, local Nusselt number and local Sherwood number for several values of the parameters, namely the velocity ratio parameter, suction/injection parameter and nanofluid parameters. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed
Recommended Citation
Shah, Sarvang D., "Heat Transfer in a Nanofluid Flow past a Permeable Continuous Moving Surface" (2010). ETD Archive. 451.
https://engagedscholarship.csuohio.edu/etdarchive/451