Date of Award

2012

Degree Type

Thesis

Department

Mechanical Engineering

First Advisor

Richter, Hanz

Subject Headings

Electric bicycles -- Brakes, Electric bicycles -- Brakes -- Computer simulation, Mechatronics, mechatronics modeling electric bicycle regenerative braking bond graph modeling pid controller

Abstract

Electric bicycles are widely available in user markets. However their use as a daily commuting vehicle is limited due to the need for frequent recharging. This thesis focuses on the mathematical modeling of electrical bicycle with regenerative breaking. Basic bond graphs methods are discussed here to develop state space models for mechatronic systems. A bond graph based mathematical model of an electric bicycle with regeneration is developed in this thesis. Mathematical models are tested in simulation, generating different road scenarios. Parameters required for the simulation are calculated using an experimental setup. The thesis shows the capability of bond graphs to assist in calculations for regenerative charging. The main focus of this thesis is to evaluate simulation models against a prototype. Simulation results and road testing of the prototype indicate the regenerative braking is not only feasible, but an advantage to implement in an electric bicycle. It is shown that the distance between battery recharge is improved by as much as 10 depending on riding conditions

COinS