Intersegmental and Local Interneurons in the Metathorax of the Stick Insect Carausius morosus That Monitor Middle Leg Position

Document Type


Publication Date


Publication Title

Journal of Neurophysiology


1. In the stick insect, proprioceptive information from the middle leg is used to define the target for the swing movement of the adjacent rear leg ('targeting behavior'). To investigate the underlying neural circuits, intracellular recordings were made in the ganglion controlling the rear leg, the metathoracic ganglion, while systematically moving the tarsus of the middle leg. 2. Several intersegmental interneurons and one local interneuron were identified as possible contributors to the targeting behavior. The intersegmental interneurons code the position of the middle leg tarsus in a highly simplified manner: test movements of the middle leg in the dorsal, lateral, and caudal directions from the standard starting position at right angles to the thorax elicit phasic-tonic responses in three different intersegmental neurons. The response in each interneuron actually reflects the movement and position at only one joint of the middle leg: for the neurons responding primarily to movement in the caudal, dorsal, and lateral test directions, the adequate stimulus is movement at the subcoxal joint, the coxa-trochanter joint, and the femur-tibia joint, respectively. 3. The metathoracic local interneuron integrates information from ipsilateral middle and rear legs in such a way as to provide an approximate measure of the distance between the two tarsi in the longitudinal direction. It is depolarized in a phasic-tonic manner both by caudal movements of the ipsilateral middle leg and by rostral movements of the ipsilateral rear leg. The adequate stimulus in each case is the change in the angle at the subcoxal joint of the leg moved. Depolarization of this neuron activates retractor motoneurons, which is consistent with a role in terminating the swing movement. 4. Altogether the results indicate first, that the targeting behavior could be controlled by very few intersegmental channels and, second, that the nervous system encodes the position of the middle leg tarsus in terms of joint angles rather than in abstract, body-centered coordinates.