Treating Respiratory Viral Diseases with Chemically Modified, Second Generation Intranasal siRNAs
Document Type
Contribution to Books
Publication Date
2009
Publication Title
Methods in Molecular Biology: siRNA and miRNA Gene Silencing : From Bench to Bedside
Abstract
Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.
DOI
10.1007/978-1-60327-547-7_16
Recommended Citation
Barik, S. (2009). Treating Respiratory Viral Diseases with Chemically Modified, Second Generation Intranasal siRNAs. In siRNA and miRNA Gene Silencing : From Bench to Bedside, M. Sioud, ed. Humana, p. 331-342.
Volume
487
Comments
Also published in Methods in Molecular Biology2009;487:331-41. doi: 10.1007/978-1-60327-547-7_16.