Document Type


Publication Date


Publication Title

Journal of The American Heart Association


Background: Production of the proatherogenic metabolite, trimethylamine N-oxide (TMAO), from dietary nutrients by intestinal microbiota enhances atherosclerosis development in animal models and is associated with atherosclerotic coronary artery disease in humans. The utility of studying plasma levels of TMAO to risk stratify in patients with peripheral artery disease (PAD) has not been reported. Methods and Results: We examined the relationship between fasting plasma TMAO and all-cause mortality (5-year), stratified by subtypes of PAD and presence of coronary artery disease in 935 patients with PAD who underwent elective angiography for cardiac evaluation at a tertiary care hospital. Median plasma TMAO was 4.8 μmol/L (interquartile range, 2.9–8.0 μmol/L). Elevated TMAO levels were associated with 2.7-fold increased mortality risk (fourth versus first quartiles, hazard ratio 2.86, 95% CI 1.82–3.97, P<0.001). Following adjustments for traditional risk factors, inflammatory biomarkers, and history of coronary artery disease, the highest TMAO quartile remained predictive of 5-year mortality (adjusted hazard ratio 2.06, 95% CI 1.36–3.11, P<0.001). Similar prognostic value for elevated TMAO was seen for subjects with carotid artery, non–carotid artery, or lower extremity PAD. TMAO provided incremental prognostic value for all-cause mortality (net reclassification index, 40.22%; P<0.001) and improvement in area under receiver operator characteristic curve (65.7% versus 69.4%; P=0.013). Conclusions: TMAO, a pro-atherogenic metabolite formed by gut microbes, predicts long-term adverse event risk and incremental prognostic value in patients with PAD. These findings point to the potential for TMAO to help improve selection of high-risk PAD patients with or without significant coronary artery disease, who likely need more aggressive and specific dietary and pharmacologic therapy.


This research was supported by grants from the National Institutes of Health (NIH) and the Office of Dietary Supplements (R01HL103866, P20HL113452, R01DK106000). The GeneBank study has been supported by NIH grants P01HL076491, P01HL098055, R01HL103931, and the cleveland clinic Clinical Research Unit of the Case Western Reserve University CTSA (UL1TR000439). Dr. Wang was partially supported by NIH grant R01HL130819.




Publisher's PDF

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License





Included in

Mathematics Commons