Document Type
Article
Publication Date
9-2007
Publication Title
Automatica
Abstract
Nonlinear and non-Gaussian processes with constraints are commonly encountered in dynamic estimation problems. Methods for solving such problems either ignore the constraints or rely on crude approximations of the model or probability distributions. Such approximations may reduce the accuracy of the estimates since they often fail to capture the variety of probability distributions encountered in constrained linear and nonlinear dynamic systems. This article describes a practical approach that overcomes these shortcomings via a novel extension of sequential Monte Carlo (SMC) sampling or particle filtering. Inequality constraints are imposed by accept/reject steps in the algorithm. The proposed approach provides samples representing the posterior distribution at each time point, and is shown to satisfy the same theoretical properties as unconstrained SMC. Illustrative examples show that results of the proposed approach are at least as accurate as moving horizon estimation, but computationally more efficient and in addition, the approach indicates the uncertainty associated with these estimates.
Repository Citation
Lang, Lixin; Chen, Wen-shiang; Bakshi, Bhavik R.; Goel, Prem K.; and Ungarala, Sridhar, "Bayesian Estimation Via Sequential Monte Carlo Sampling-Constrained Dynamic Systems" (2007). Chemical & Biomedical Engineering Faculty Publications. 65.
https://engagedscholarship.csuohio.edu/encbe_facpub/65
Original Citation
Lang, L., Chen, W., Bakshi, B. R., Goel, P. K., , & Ungarala, S. (2007). Bayesian estimation via sequential Monte Carlo sampling—Constrained dynamic systems. Automatica, 43(9), 1615-1622. doi:10.1016/j.automatica.2007.02.012
Volume
43
Issue
9
DOI
10.1016/j.automatica.2007.02.012
Version
Postprint
Publisher's Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Automatica. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Automatica, 43, 9, (September 2007) DOI 10.1016/j.automatica.2007.02.012