Title

General Time-Dependent Green’s Functions of Line Forces in a Two-Dimensional, Anisotropic, Elastic, and Infinite Solid

Document Type

Article

Publication Date

3-1-2021

Publication Title

Engineering Analysis with Boundary Elements

Abstract

© 2020 In this paper, we derive analytical time-dependent Green's functions in a two-dimensional, anisotropic elastic, and infinite solid. It is based on the Stroh formalism combined with application of the Cauchy's residue theorem. Final expressions of the Green's function are in terms of simple finite line integral from 0 to 2π. The time-dependence of the line forces can be impulsive, Heaviside, or within a given time duration. The space-dependence of the line force is very general, including concentrated or uniformly distributed sources within a given line interval. Green's functions of both displacements and stresses are derived in analytical forms, and are verified against existing results. Numerical examples are presented to demonstrate the effect of source types and material anisotropy on the Green's functions.

DOI

10.1016/j.enganabound.2020.12.013

Volume

124

Share

COinS