Document Type

Article

Publication Date

5-2024

Publication Title

Journal of Ecology

Disciplines

Biology

Abstract

Gymnosperms encompass a diverse group of mostly woody plants with high ecological and economic value, yet little is known about the scope and organization of fine-root trait diversity among gymnosperms due to the undersampling of most gymnosperm families and the dominance of angiosperm groups in recent syntheses. New and existing data were compiled for morphological traits (root diameter, length, tissue density, specific root length [SRL] and specific root area [SRA]), the architectural trait branching ratio, root nitrogen content [N] and mycorrhizal colonization. We used phylogenetic least squares regression and principal component analysis to determine trait-trait relationships and coordination across 66 species, representing 11 of the 12 extant gymnosperm families from boreal, temperate, subtropical and tropical biomes. Finally, we compared the relationship between family divergence time and mean trait values to determine whether evolutionary history structured variation in fine-root traits within the gymnosperm phylogeny. Wide variation in gymnosperm root traits could be largely captured by two primary axes of variation defined by SRL and diameter, and root tissue density and root nitrogen, respectively. However, individual root length and SRA each had significant correlations with traits defining both main axes of variation. Neither mycorrhizal colonization nor root branching ratio were closely related to other traits. We did not observe a directional evolution of mean trait values from older to more recently diverged gymnosperm families. Synthesis. Despite their unique evolutionary history, gymnosperms display a root economic space similar to that identified in angiosperms, likely reflecting common constraints on plants adapting to diverse environments in both groups. These findings provide greater confidence that patterns observed in broad syntheses justly capture patterns of trait diversity among multiple, distinct lineages. Additionally, independence between root architecture and other traits may support greater diversity in below-ground resource acquisition strategies. Unlike angiosperms, there were no clear trends towards increasingly thin roots over evolutionary time, possibly because of lower diversification rates or unique biogeographic history among gymnosperms, though additional observations are needed to more richly test evolutionary trends among gymnosperms.

DOI

10.1111/1365-2745.14315

Version

Publisher's PDF

Included in

Biology Commons

Share

COinS