Document Type

Article

Publication Date

6-1-2010

Publication Title

Plos One

Abstract

Background: Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human β-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown. Methodology: The relationship between hBD-3, monocyte chemoattractant protein-1 (MCP-1), TAMs, and CCR2 was examined using immunofluorescence microscopy in normal and oral carcinoma in situ biopsy specimens. The ability of hBD-3 to chemoattract host macrophages in vivo using a nude mouse model and analysis of hBD-3 on monocytic cell migration in vitro, applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. Conclusions/Findings: MCP-1, the most frequently expressed tumor cell-associated chemokine, was not produced by tumor cells nor correlated with the recruitment of macrophages in oral carcinoma in situ lesions. However, hBD-3 was associated with macrophage recruitment in these lesions and hBD-3-expressing tumorigenic cells induced massive tumor infiltration of host macrophages in nude mice. HBD-3 stimulated the expression of tumor-promoting cytokines, including interleukin-1α (IL-1α), IL-6, IL-8, CCL18, and tumor necrosis factor-α (TNF-α) in macrophages derived from human peripheral blood monocytes. Monocytic cell migration in response to hBD-3 was inhibited by cross-desensitization with MCP-1 and the specific CCR2 inhibitor, RS102895, suggesting that CCR2 mediates monocyte/macrophage migration in response to hBD-3. Collectively, these results indicate that hBD-3 utilizes CCR2 to regulate monocyte/macrophage trafficking and may act as a tumor cell-produced chemoattractant to recruit TAMs. This novel mechanism is the first evidence of an hBD molecule orchestrating an in vivo outcome and demonstrates the importance of the innate immune system in the development of tumors.

Comments

This work was supported by a Scientist Development Grant #0535088N from the American Heart Association (http:www.americanheart.org) (GJ) and Grant #IRG-91-022-15 from the American Cancer Society (wwww.cancer.org) (GJ), NIH/NIDCR P01DE019089 and P01DE019759 (AW), and NIH/R01DC007392 and NIH/NIDCD R01DC009246 (QZ) from the National Institutes of Health (www.nih.gov).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1371/journal.pone.0010993

Version

Publisher's PDF

Volume

5

Issue

6

Included in

Chemistry Commons

Share

COinS