Document Type
Article
Publication Date
9-1-2007
Publication Title
The Journal of Steroid Biochemistry and Molecular Biology
Abstract
Aromatase expression and enzyme activity in breast cancer patients is greater in or near the tumor tissue compared with the normal breast tissue. Complex regulation of aromatase expression in human tissues involves alternative promoter sites that provide tissue-specific control. Previous studies in our laboratories suggested a strong association between aromatase (CYP19) gene expression and the expression of cyclooxygenase (COX) genes. Additionally, nonsteroidal anti-inflammatory drugs (NSAIDs) and COX selective inhibitors can suppress CYP19 gene expression and decrease aromatase activity. Our current hypothesis is that pharmacological regulation of aromatase and/or cyclooxygenases can act locally to decrease the biosynthesis of estrogen and may provide additional therapy options for patients with hormone-dependent breast cancer. Two pharmacological approaches are being developed, one involving mRNA silencing by selective short interfering RNAs (siRNA) molecules and the second utilizing small molecule drug design. In the first approach, short interfering RNAs were designed against either human aromatase mRNA or human COX-2 mRNA. Treatment of breast cancer cells with siAROMs completely masked the aromatase enzyme activity. Treatment with COX-2 siRNAs decreased the expression of COX-2 mRNA; furthermore, the siCOX-2-mediated decrease also resulted in suppression of CYP19 mRNA. The small molecule drug design approach focuses on the synthesis and biological evaluation of a novel series of sulfonanilide analogs derived from the COX-2 selective inhibitors. The compounds suppress aromatase enzyme activity in SK-BR-3 breast cancer cells in a dose and time-dependent manner, and structure activity analysis does not find a correlation between aromatase suppression and COX inhibition. Real-time PCR analysis demonstrates that the sulfonanilide analogs decrease aromatase gene transcription in breast cells. Thus, these results suggest that the siRNAs and novel sulfonanilides targeting aromatase expression may be valuable tools for selective regulation of aromatase in breast cancer.
Recommended Citation
Brueggemeier, Robert W.; Su, Bin; Sugimoto, Yasuro; Diaz-Cruz, Edgar S.; and Davis, Danyetta D., "Aromatase and COX in Breast Cancer: Enzyme Inhibitors and Beyond" (2007). Chemistry Faculty Publications. 380.
https://engagedscholarship.csuohio.edu/scichem_facpub/380
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
DOI
10.1016/j.jsbmb.2007.05.021
Version
Postprint
Volume
106
Issue
2017-01-05
Comments
This work was supported by the National Institutes of Health (NIH) Grant R01 CA73698 (R.W.B.), the NIH Chemistry and Biology Interface Training Program Grant T32 GM08512 (E.S.D.-C.), and The Ohio State University Comprehensive Cancer Center Breast Cancer Research Fund.