"Proteasome-Mediated Degradation of RNase L in Response to Phorbol-12-M" by Barbara I. Chase, Yan Zhou et al.
 

Proteasome-Mediated Degradation of RNase L in Response to Phorbol-12-Myristate-13-Acetate (PMA) Treatment of Mouse L929 Cells

Document Type

Article

Publication Date

10-1-2003

Publication Title

Journal of Interferon & Cytokine Research

Abstract

2′-5′ Oligoadenylate (2-5A)-dependent RNase L is one of the key enzymes involved in the molecular mechanisms of interferon (IFN) function. Although the regulation of RNase L by 2-5A has been studied extensively, relatively little is known about how RNase L is controlled by posttranslational processes. Here, we report that phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 fibroblasts caused rapid degradation of RNase L in a dose-dependent and time-dependent manner. RNase L levels were decreased to 40% of control levels after only 5 min exposure of cells to PMA, suggesting the involvement of protein kinase C (PKC). After PMA treatment for 1 h, RNase L levels decreased to 18% of the pretreatment levels. Decay of RNase L was measured by 2-5A binding assay, ribonuclease activity, and protein levels in Western blots probed with antibody to murine RNase L. PMA treatment caused decreases in the levels of RNase L in both cytoplasm and nucleus. To explore the mechanism of RNase L degradation, we treated cells with the selective proteasome inhibitors, ALLN, MG132, and PSI, prior to PMA treatment. These inhibitors completely blocked the degradation of RNase L caused by PMA. Our results show a novel regulatory pathway for RNase L that could have an impact on its antitumor and antiviral functions.

DOI

10.1089/107999003322485062

Volume

23

Issue

10

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 9
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 8
  • Social Media
    • Shares, Likes & Comments: 4303
see details

Share

COinS