Document Type
Article
Publication Date
9-1-2007
Publication Title
Topology
Abstract
In the rational category of nilpotent complexes, let E be an H-space acting on a space X. With mild hypotheses we show that the action on the base point w: E→X factors through a map ΓE:SE→X, where S E is a finite product of odd-dimensional spheres and Γ E is a homotopy monomorphism. Among others, the following consequences are obtained:π∗(w)6=0 if and only if w is essential and H∗(w)6=0 if and only if X satisfies a strong splitting condition.
Repository Citation
Felix, Yves and Lupton, Gregory, "Evaluation Maps in Rational Homotopy" (2007). Mathematics and Statistics Faculty Publications. 188.
https://engagedscholarship.csuohio.edu/scimath_facpub/188
DOI
10.1016/j.top.2007.03.005
Version
Postprint
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Volume
46
Issue
5