"The Choice of Prior Distribution for a Covariance Matrix in Multivaria" by Sandra M. Hurtado Rua, Madhu Mazumdar et al.
 

The Choice of Prior Distribution for a Covariance Matrix in Multivariate Meta-Analysis: A Simulation Study

Sandra M. Hurtado Rua, Cleveland State University
Madhu Mazumdar, Icahn School of Medicine at Mount Sinai
Robert L. Strawderman, University of Rochester

Abstract

Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke.