Document Type
Article
Publication Date
2-1-2016
Publication Title
Statistical Methods in Medical Research
Abstract
We propose a hierarchical Bayesian methodology to model spatially or spatio-temporal clustered survival data with possibility of cure. A flexible continuous transformation class of survival curves indexed by a single parameter is used. This transformation model is a larger class of models containing two special cases of the well-known existing models: the proportional hazard and the proportional odds models. The survival curve is modeled as a function of a baseline cumulative distribution function, cure rates, and spatio-temporal frailties. The cure rates are modeled through a covariate link specification and the spatial frailties are specified using a conditionally autoregressive model with time-varying parameters resulting in a spatio-temporal formulation. The likelihood function is formulated assuming that the single parameter controlling the transformation is unknown and full conditional distributions are derived. A model with a non-parametric baseline cumulative distribution function is implemented and a Markov chain Monte Carlo algorithm is specified to obtain the usual posterior estimates, smoothed by regional level maps of spatio-temporal frailties and cure rates. Finally, we apply our methodology to melanoma cancer survival times for patients diagnosed in the state of New Jersey between 2000 and 2007, and with follow-up time until 2007.
Repository Citation
Hurtado Rua, Sandra M. and Dey, Dipak K., "A Transformation Class for Spatio-temporal Survival Data with a Cure Fraction" (2016). Mathematics and Statistics Faculty Publications. 268.
https://engagedscholarship.csuohio.edu/scimath_facpub/268
DOI
10.1177/0962280212445658
Version
Postprint
Volume
25
Issue
1
Comments
Sandra M Hurtado Rua acknowledges partial support from the Clinical Translational Science Center grant (UL1-RRO24996).