ORCID ID

http://orcid.org/0000-0003-2468-1827

Document Type

Article

Publication Date

3-29-2021

Publication Title

Physical Review E

Abstract

Heterogeneous systems of active matter exhibit a range of complex emergent dynamical patterns. In particular, it is difficult to predict the properties of the mixed system based on its constituents. These considerations are particularly significant for understanding realistic bacterial swarms, which typically develop heterogeneities even when grown from a single cell. Here, mixed swarms of cells with different aspect ratios are studied both experimentally and in simulations. In contrast with previous theory, there is no macroscopic phase segregation. However, locally, long cells act as nucleation cites, around which aggregates of short, rapidly moving cells can form, resulting in enhanced swarming speeds. On the other hand, high fractions of long cells form a bottleneck for efficient swarming. Our results suggest a physical advantage for the spontaneous heterogeneity of bacterial swarm populations.

Comments

Partial support from The Israel Science Foundation’s Grant 373/16 and the Deutsche Forschungsgemeinschaft (The German Research Foundation DFG) Grant No. HE5995/3–1 and Grant No. BA1222/7–1 are thankfully acknowledged.

DOI

10.1103/PhysRevE.103.032413

Version

Preprint

Volume

103

Issue

3

Included in

Mathematics Commons

Share

COinS