Document Type

Article

Publication Date

10-2020

Publication Title

Mathematika

Abstract

n the course of classifying generic sparse polynomial systems which are solvable in radicals, Esterov recently showed that the volume of the Minkowski sum P1++Pd of d-dimensional lattice polytopes is bounded from above by a function of order O(m2d), where m is the mixed volume of the tuple (P1,,Pd). This is a consequence of the well-known Aleksandrov-Fenchel inequality. Esterov also posed the problem of determining a sharper bound. We show how additional relations between mixed volumes can be employed to improve the bound to O(md), which is asymptotically sharp. We furthermore prove a sharp exact upper bound in dimensions 2 and 3. Our results generalize to tuples of arbitrary convex bodies with volume at least one. This paper relies extensively on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.

Comments

The two first authors and a research visit of the third author were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 314838170, GRK 2297 MathCoRe.

DOI

10.1112/mtk.12055

Volume

66

Issue

4

Included in

Mathematics Commons

Share

COinS