Document Type

Article

Publication Date

9-1-2009

Publication Title

European Physical Journal: Applied Physics

Abstract

We explore numerically the feasibility of enhancing the mixing capability of microchannels by employing the Weierstrass fractal function to generate a pattern of V-shaped ridges on the channel floor. Motivated by experimental limitations such as the finite resolution (similar to 10 mu m) associated with rapid prototyping through soft lithography techniques, we study the influence on the quality of mixing of having finite width ridges. The mixing capability of the designs studied is evaluated using an entropic measure and the designs are optimized with respect to: the distances between the ridges and the position range of their tip along the width of the channels. The results are evaluated with respect to the benchmarks established by the very successful staggered herring bone (SHB) design. We find that the use of a non periodic protocol to generate the geometry of the bottom surface of the microchannels can lead to consistently larger entropic mixing indices than in cyclic structures. Furthermore, since the optimization curves (mixing index vs. geometric parameters) are broader at the maximum for fractal microchannels than for their SHB counterparts, the microchannel designs using the Weierstrass fractal function are less sensitive to experimental uncertainties.

Original Citation

Fodor, Petru S., M. Itomlenskis, and Miron Kaufman. "Assessment of Mixing in Passive Microchannels with Fractal Surface Patterning." European Physical Journal: Applied Physics 47 (2009): 31301.

Article Number

31301

DOI

10.1051/epjap/2009108

Version

Publisher's PDF

Volume

47

Issue

3

Included in

Physics Commons

Share

COinS