Document Type
Article
Publication Date
10-8-2014
Publication Title
Fuel Cells
Abstract
In this work, the fluid dynamics within a membrane-less microchannel fuel cell is analyzed computationally. The membrane-less design is a result of the laminar nature of the fluid flow at small Reynolds numbers, restricting the fuel and oxidant to the vicinity of the corresponding electrodes, without the need of a proton exchange membrane (PEM). However, the performance of such cells is limited by the slow diffusive mass transport near the electrodes, with a large fraction of the reactants leaving the channel without coming in contact with the catalytic surfaces, and thus not being used. We mitigate this problem through the introduction of channel surface modification consisting of angled grooves designed to create convective flows that direct the reactants toward the active surfaces. The grooved structures are optimized for maximum fuel utilization. Operation of this type of cells at Péclet numbers close to 2,500 leads to a performance doubling compared with unmodified cells. Moreover, this increase in efficiency is accompanied by a more uniform distribution of the current across the electrodes, reducing the possibility of hot spots being developed.
Repository Citation
D'Alessandro, J. and Fodor, Petru S., "Use of Grooved Microchannels to Improve the Performance of Membrane-Less Fuel Cells" (2014). Physics Faculty Publications. 207.
https://engagedscholarship.csuohio.edu/sciphysics_facpub/207
DOI
10.1002/fuce.201400047
Version
Postprint
Publisher's Statement
This is the accepted version of the following article: J. D'Alessandro and P. S. Fodor, "Use of Grooved Microchannels to Improve the Performance of Membrane-Less Fuel Cells," Fuel Cells 14 (6), 818-826 (2014). , which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/fuce.201400047/full
Volume
14
Issue
6