Document Type

Article

Publication Date

11-8-2003

Publication Title

The Journal of Chemical Physics

Abstract

A systematic analysis of the mode structure of diffusive relaxations in 1 MDa hydroxypropylcellulose(HPC):water is presented. New methods and data include (1) use of integral spectral moments to characterize nonexponential decays, (2) spectra of small probes in concentrated HPC solutions, (3) temperature dependence of the mode structure, and (4) comparison of optical probe spectra and spectra of probe-free polymer solutions. We find that (1) probe and polymer relaxations are in general not the same; (2) the apparent viscometric crossover near ct≈6 g/l is echoed by probe behavior; (3) our HPC solutions have a characteristic dynamic length, namely the 50 nm length that matches the polymer’s hydrodynamic radius; (4) characterization of spectral modes with their mean relaxation time affords simplifications relative to other characterizations; and (5) contrary to some expectations, Stokes–Einsteinian behavior (diffusion rate determined by the macroscopic viscosity) is not observed, even for large probes in relatively concentrated solutions. We propose that the viscometric and light scattering effects found in HPC solutions at elevated concentrations reflect the incipient formation of a generalized Kivelson [S. A. Kivelson et al., J. Chem. Phys. 101, 2391 (1994)] glass.

Comments

The partial support of this work by the National Science Foundation under Grant No. DMR99-85782 is gratefully acknowledged.

DOI

10.1063/1.1615968

Version

Publisher's PDF

Volume

119

Issue

18

Included in

Physics Commons

Share

COinS